Abstract

This paper analyzes patterns in the earnings development of young labor market entrants over their life cycle. We identify four distinctly different types of transition patterns between discrete earnings states in a large administrative data set. Further, we investigate the effects of labor market conditions at the time of entry on the probability of belonging to each transition type. To estimate our statistical model we use a model-based clustering approach. The statistical challenge in our application comes from the difficulty in extending distance-based clustering approaches to the problem of identifying groups of similar time series in a panel of discrete-valued time series. We use Markov chain clustering which is an approach for clustering discrete-valued time series obtained by observing a categorical variable with several states. This method is based on finite mixtures of first-order time-homogeneous Markov chain models. In order to analyze group membership we present an extension to this approach by formulating a probabilistic model for the latent group indicators within the Bayesian classification rule using a multinomial logit model.

Keywords: Labor Market Entry Conditions, Transition Data, Markov Chain Monte Carlo, Multinomial Logit, Panel Data, Auxiliary Mixture Sampling

1 Introduction

The competitive model of the labor market predicts that the development of individual earnings over the life cycle follows the development of individual marginal productivity. Beside productivity related factors such as on-the-job learning and improvements in worker-firm matches over time, shocks to aggregate labor demand – for instance due to a major recession – will also have an impact on wage rates. In a spot labor market, however, those temporary changes in labor demand are relatively short lived and should not influence wages over prolonged periods of time. This view has been seriously challenged both by studies on cohort size effects (Welch, 1979) and studies on the impact of early career problems on later outcomes. The general approach taken by these studies is to assess the initial wage or employment penalties from entering the labor market in a bad year and to test whether this initial impact persists over time. Raaum and Røed (2006), e.g., show for Norway that school leavers facing particularly depressed labor market conditions at the start of their career face a higher risk of unemployment both initially and after ten years. Oreopoulos et al. (2008) study careers of Canadian college graduates and find a high initial wage penalty of entering in a recession, but the penalty fades away during the first decade of a worker’s career.1

In this paper we study a different aspect of the impact labor market entry conditions can have on career development. We depart from the traditional strategy of modeling wage or employment outcomes at a particular point in time and focus on mobility throughout the complete career path instead. Thereby our aim is twofold. First, we want to identify specific career patterns that characterize the earnings development of individuals after entry in the labor market. The idea is to extend the traditional mover-stayer classification to a wider variety of career types. Intuitively, some individuals may be in stable employment relationships throughout their working lives, while others are observed in more volatile jobs; still others could be considered as social climbers with a consistent upward mobility, while others could be characterized as losers with a high tendency of downward mobility. Our second goal is to find out whether labor market conditions at the start of one’s career have an impact on the type of career pursued over the lifetime. While entering

1Studies for Austria (Brunner and Kuhn, 2009), the UK (Burgess et al., 2003), Japan (Kondo, 2007), Sweden (Kwon and Meyerson-Milgrom, 2007) or the US (Oyer, 2006; Kahn, 2009; Genda et al., 2010) use essentially the same strategy by looking at each year of an individual’s career separately.
the labor market in a recession might impose an immediate penalty in the form of lower starting
wages, it might also influence the life-time career path; i.e. an individual might be characterized
by a different career-type when entering the labor market in a recession as opposed to a boom
period.

The statistical problem behind our empirical analysis consists of finding groups of similar
time series in a set or panel of time series that are unlabeled a priori. In this paper we introduce
new clustering techniques which determine subsets of similar time series within the panel. Com-
pared to cross-sections, distance-based clustering methods are rather difficult to define for time
series data. Frühwirth-Schnatter and Kaufmann (2008) demonstrated recently that model-based
clustering based on finite mixture models (Banfield and Raftery, 1993; Fraley and Raftery, 2002)
extends to time series data in quite a natural way. The crucial point in model-based cluster-
ing is to select an appropriate clustering kernel in terms of a sampling density which captures
salient features of the observed time series. Various such clustering kernels were suggested for
panels with real-valued time series observations by Frühwirth-Schnatter and Kaufmann (2008)
and Juárez and Steel (2010).

For discrete-valued individual level panel data such as the panel considered in this paper,
clustering kernels are typically based on first-order time-homogeneous Markov chain models.
For discrete-valued time series it is particularly difficult to define distance measures and model-
based clustering has been shown to be a useful alternative. Fougère and Kamionka (2003), for
instance, considered a mover-stayer model in continuous time which is a constrained mixture of
two Markov chains to incorporate a simple form of heterogeneity across individual labor market
transition data. Mixtures of time-homogeneous Markov chains both in continuous and discrete
time are also considered in Frydman (2005) including an application to bond ratings migration.
Pamminger and Frühwirth-Schnatter (2010) construct more general clustering kernels based on
first-order time-homogeneous Markov chain models to capture unobserved heterogeneity in the
transition behavior within each cluster.

In this paper we extend clustering of discrete-valued panel data based on Markov chain
models further by modeling the prior probability to belong to a certain cluster to depend on a
set of covariates via a multinomial logit model. The determinants we consider in our application
are individual characteristics, such as the type of skill and occupation, and local labor market
characteristics at the time of entry. To deal with the initial conditions problem in our first-order transition model with unobserved heterogeneity, we extend the approach suggested by Wooldridge (2005) to model-based clustering. Specifically, we allow for conditional dependence of unobserved cluster membership on the initial states.

For estimation, we pursue a Bayesian approach which offers several advantages compared to EM estimation considered, for instance, in Frydman (2005). In particular, Bayesian inference easily copes with problems that occur with ML estimation if for any cluster no transitions are observed in the data for any cell of the cluster-specific transition matrix. A Bayesian approach to Markov chain clustering has been used earlier by Pamminger and Frühwirth-Schnatter (2010), and by Fougère and Kamionka (2003) for the special case of a mover-stayer model. In the present paper we suggest a new two-block Markov chain Monte Carlo (MCMC) sampler for the mixtures-of-experts extension of Markov chain clustering. To estimate the parameters in the multinominal regression model describing group membership we use auxiliary mixture sampling in the differenced random utility model (dRUM) representation (Frühwirth-Schnatter and Frühwirth, 2010).

The paper is organized as follows: Section 2 introduces the data used for our empirical analysis, Section 3 describes Bayesian inference using mixtures-of-experts Markov chain clustering, Section 4 summarizes the results, and Section 5 concludes.

2 Data

Our empirical analysis is based on data from the Austrian Social Security Data Base (ASSD), which combines detailed longitudinal information on employment and earnings of all private sector workers in Austria since 1972 (Zweimüller et al., 2009).

The sample we consider consists of $N = 49,279$ male Austrian workers, who enter the labor market for the first time in the years 1975 to 1985 and are less than 25 years old at entry. We do not consider females in our sample, because hours of work are not observed. For non-Austrian citizens it is not always clear, if we can measure the entry in the labor market correctly. We extract yearly earnings observations measured by gross monthly wages in May of successive years and observe wages for a time span between 2 to 31 years per individual. The median
time an individual is observed in our panel is equal to 22 years. Following Weber (2001), the gross monthly wage is divided into six categories labeled with 0 up to 5. Category zero corresponds to zero-income, i.e. unemployment or out of labor force. The categories one to five correspond to the quintiles of the income distribution which are calculated for each year from all non-zero wages observed in that year for the total population of male employees in Austria. The use of wage categories has the advantage that no inflation adjustment has to be made and that it circumvents the problem that in Austria recorded wages are right-censored because wages that exceed a social security payroll tax cap are recorded with exactly that limit only. We cut the time series of workers after observing more than five consecutive years with zero income, because these workers have most likely transited to self-employment or moved out of the country. For individuals first observed in the data as apprentices, we consider their first wage after the apprenticeship as the point of job entry, because the apprenticeship allowance is very low compared to average wages.

As we are interested in characterizing the wage path since the first job, we are including only pre-determined variables, like age, education and type of first job; all other variables, like job mobility or work experience or tenure are treated as endogenous in our model. As education is not directly available in the data, we approximate it with apprenticeship education and the age at the start of the first job: We take young men who worked for more than 2.5 years as apprentices, as baseline category. We consider young men entering the labor market before their 18th birthday without having finished apprenticeship as “unskilled”. Furthermore, those starting after their 18th birthday without finishing apprenticeship are coded as “skilled”, because they are likely to have finished some kind of higher education such as high school or university. Finally, we corrected these dummy variables (in 392 cases) using the information in the data about the ‘academic degree’ which is unfortunately not up-to-date due to missing or late reports of the employees to the social security agency.

The period from 1975 to 1985 for which we observe labor market entries is characterized by a fair amount of business cycle variation, ranging from a boom period in the mid 1970’s to the recession in the early 1980’s. The state of the labor market is captured by the unemployment rate across 65 districts, which is measured at the date of entry into the labor market. These unemployment rates have a mean of 5.29 and a standard deviation of 3.68, with a standard
deviation between districts of 3.0 and within districts over time of 2.7.

3 Method

3.1 Mixtures-of-Experts Markov Chain Models

As for many data sets available for empirical labor market research, the data set introduced in Section 2 takes the form of a discrete-valued panel. The categorical outcome variable y_{it} assumes one of K states, labeled by \{1, \ldots, K\}, and is observed for N individuals $i = 1, \ldots, N$ over T_i discrete time periods, i.e. for $t = 0, \ldots, T_i$. For each individual i, we model the state of y_{it} in period t to depend on the state of the past value $y_{i,t-1}$. Subsequently, $y_i = \{y_{i1}, \ldots, y_{iT_i}\}$ denotes an individual time series, excluding the initial state y_{i0}.

3.1.1 Markov Chain Clustering

Individual level transition data can be considered as a special case of a panel of discrete-valued time series. To capture the presence of unobserved heterogeneity on the dynamics in a panel of discrete-valued time series, Pamminger and Frühwirth-Schnatter (2010) extended model-based clustering as introduced by Frühwirth-Schnatter and Kaufmann (2008) to this type of time series. They assume that H hidden clusters are present in the panel and a clustering kernel $p(y_i|\vartheta_h)$ with cluster-specific parameter ϑ_h is used for describing all time series in group $h, h = 1, \ldots, H$, i.e. $p(y_i|S_i, \vartheta_1, \ldots, \vartheta_H) = p(y_i|\vartheta_{S_i})$, where $S_i \in \{1, \ldots, H\}$ is a latent group indicator. To capture the discrete nature of the data, Pamminger and Frühwirth-Schnatter (2010) considered various clustering kernels $p(y_i|\vartheta_h)$ based on Markov chains like Markov chain clustering, Dirichlet multinomial clustering and clustering based on inhomogeneous Markov chains. They performed an illustrative comparison of Markov chain clustering and Dirichlet multinomial clustering for a smaller and less well specified version of the panel data set introduced in Section 2. Since this comparison revealed that both methods yielded comparable results, we decided to focus subsequently on Markov chain clustering, because Bayesian inference is computationally less demanding, see Subsection 3.3.

Markov chain clustering is based on modeling separate transition processes for each group through a first-order time-homogeneous Markov chain model with cluster-specific transition
matrix ξ_h, where $\xi_{h,jk} = \Pr(y_{it} = k | y_{i,t-1} = j, S_i = h)$, $j, k = 1, \ldots, K$. Hence each row of ξ_h represents a probability distribution over the discrete set $\{1, \ldots, K\}$, i.e. $\sum_{k=1}^{K} \xi_{h,jk} = 1$. The clustering kernel $p(y_i | \xi_h)$ reads, with $\vartheta_h = \xi_h$:

$$
p(y_i | \xi_h) = \prod_{t=1}^{T_i} p(y_{it} | y_{i,t-1}, \xi_h) = \prod_{j=1}^{K} \prod_{k=1}^{K} \xi_{N_{i,jk}}^{N_{i,jk}},
$$

where $N_{i,jk} = \#\{y_{it} = k, y_{i,t-1} = j\}$ is the number of transitions from state j to state k observed in time series i. Note that we condition in (1) on the first observation y_{i0} and the actual number of observations is equal to T_i for each time series.

A special version of this Markov chain clustering method has been applied to labor market transition data in Fougère and Kamionka (2003) who considered a mover-stayer model where $H = 2$ and ξ_1 is equal to the identity matrix while only ξ_2 is unconstrained. Frydman (2005) considered another constrained mixture of Markov chain models where the transition matrices ξ_h, $h \geq 2$, are related to the transition matrix ξ_1 of the first group through $\xi_h = I - \Lambda_h (I - \xi_1)$ where I is the identity matrix and $\Lambda_h = \text{Diag}(\lambda_{h,1}, \ldots, \lambda_{h,K})$ with $0 \leq \lambda_{h,j} \leq 1/(1 - \xi_1_{jj})$ for $j = 1, \ldots, K$. In contrast to these approaches, Pamminger and Frühwirth-Schnatter (2010) assume that the transition matrices ξ_1, \ldots, ξ_H are entirely unconstrained which leads to more flexibility in capturing differences in the transition behavior between the groups.

3.1.2 Modeling Prior Group Membership

Clustering as in Pamminger and Frühwirth-Schnatter (2010) is based on the standard finite mixture model which assumes that the group indicators $S = (S_1, \ldots, S_N)$ are a priori independent with $\Pr(S_i = h) = \eta_h$ such that $\sum_{h=1}^{H} \eta_h = 1$. In the present application this assumption implies that each individual has the same prior probability to follow a particular group-specific career dynamic, regardless of the individual’s observable characteristics or the circumstances at labor market entry.

To obtain a more meaningful model for the data introduced in Section 2, an extension of model-based clustering for discrete-valued panel data which allows pre-determined variables to impact on group membership is suggested in this subsection. Specifically, we model prior group
membership $\Pr(S_i = h)$ through a multinomial logit model (MNL) for S_i:

$$ \Pr(S_i = h|\beta_2, \ldots, \beta_H) = \frac{\exp (x_i \beta_h)}{1 + \sum_{l=2}^H \exp (x_i \beta_l)} ,$$

(2)

where x_i is a row vector of regressors, including 1 for the intercept and β_2, \ldots, β_H are group-specific unknown regression coefficients. For identifiability reasons we set $\beta_1 = 0$, which means that $h = 1$ is the baseline group and β_h is the effect on the log-odds ratio relative to the baseline.

This model has been introduced in the machine learning literature as mixtures-of-experts model (Peng et al., 1996) and is also known as smoothly mixing regression model (Geweke and Keane, 2007) in the econometrics literature. It has been applied in many different areas, among them speech recognition (Peng et al., 1996), modeling portfolio defaults (Banachewicz et al., 2008) and modeling voting behavior (Gormley and Murphy, 2008).

mixtures-of-experts models yield important insights into the factors that determine group membership of a certain individual (Frühwirth-Schnatter and Kaufmann, 2008). Model (2) allows us to capture the influence of individual characteristics, cohort effects, or labor market conditions that are determined at the time of entry in the labor market on group membership and thereby on mobility patterns. As will be demonstrated in Subsection 3.1.3, the mixtures-of-experts extension allows us in addition to deal with the initial conditions problem present in discrete-valued dynamic panels by adding the initial wage category to the set of regressors appearing in x_i.

3.1.3 A Simple Solution to the Initial Conditions Problem

Inference in Pamminger and Frühwirth-Schnatter (2010) is carried out conditional on the initial condition y_{i0}, by treating this variable as exogenous. In our dynamic model with unobserved heterogeneity this assumption implies that the initial period earnings y_{i0} are independent of group membership S_i, which is apparently a very unsatisfactory assumption.

There is a long literature discussing the problem with initial conditions in non-linear dynamic models with unobserved heterogeneity. The key issue is to allow for dependence between the initial state y_{i0} and the latent variable S_i capturing unobserved heterogeneity. See Heckman (1981) for an early reference and Wooldridge (2005) for a recent review. These papers focus
on models where unobserved heterogeneity is captured through an individual effect S_i following a continuous distribution. However, the initial conditions problem is also relevant for the case where S_i follows a discrete distribution as for model-based clustering in a transition model and has to be addressed properly.

To handle the initial conditions problem for the discrete case, we formulate the joint distribution of $y_{i0}, \ldots, y_{iT}, S_i$ in a way that separates the choice of the clustering kernel density $p(y_{i1}, \ldots, y_{iT}|y_{i0}, \theta_{S_i})$ which is formulated conditional on y_{i0} and S_i from the choice of a joint model for y_{i0} and S_i:

$$p(y_{i0}, \ldots, y_{iT}, S_i|\theta) = p(y_{i1}, \ldots, y_{iT}|y_{i0}, \theta_{S_i})p(y_{i0}, S_i|\theta),$$

where θ contains all unknown model parameters. There are two ways of factorizing the joint distribution $p(y_{i0}, S_i|\theta)$ for y_{i0} and S_i:

$$p(y_{i0}, S_i|\theta) = p(y_{i0}|S_i, \theta)p(S_i|\theta),$$

$$p(y_{i0}, S_i|\theta) = p(S_i|y_{i0}, \theta)p(y_{i0}|\theta).$$

Factorization (4) specifies a model for y_{i0} conditional on S_i and a marginal model for S_i and extends the specification suggested by Heckman (1981) for continuous S_i to the discrete case. For continuous S_i, Heckman (1981) suggested to specify $p(y_{i0}|S_i, \theta)$ as a MNL model. To extend this approach to discrete unobserved heterogeneity, the parameters in this MNL model have to be group-specific that is switching with S_i to achieve dependence between y_{i0} and S_i. However, we expect to run into problems with parameter identification following this approach, because in certain groups we may find only very few individuals in certain initial states. An alternative approach to choose $p(y_{i0}|S_i, \theta)$ in factorization (4) relies on the existence of a stationary distribution $\pi_{\infty}(y; S_i, \theta)$ for a known value of S_i and assumes that the initial value is drawn from the stationary distribution, i.e. $p(y_{i0}|S_i, \theta) = \pi_{\infty}(y_{i0}; S_i, \theta)$. In our case, $\pi_{\infty}(y; S_i, \theta)$ is easily derived as the stationary distribution of the group-specific transition matrix ξ_{S_i}, however, it is unattractive to assume that starting wages are drawn from the stationary wage distribution.

For this reason, we prefer the second factorization (5) which specifies a model for unobserved
heterogeneity S_i conditional on a given initial condition y_{i0} and a marginal model for y_{i0} and extends the “simple solution to the initial conditions problem” suggested by Wooldridge (2005) for continuous S_i to the discrete case. In terms of our clustering procedure this means that the MNL model used for modeling S_i in (2) “simply” has to be extended such that it also depends on the initial conditions y_{i0}. This is achieved by adding indicator variables for the initial states to the covariate matrix x_i of the MNL model introduced in (2).

Our approach is directly related to Wooldridge (2005)’s treatment of the Maximum Likelihood case, where he models the mean of the random intercept distribution as being dependent on the initial state. Under the assumption that $p(S_i|x_i, \theta_1)$ and $p(y_{i0}|\theta_2)$ have no common parameters, the marginal distribution $p(y_{i0}|\theta_2)$ need not be specified explicitly, because it cancels from all posterior distributions.

3.2 Model Specification

We specify the model for earnings dynamics of labor market entrants as a first-order Markov model with group-specific transition parameters, i.e. $\Pr(y_{it} = k|y_{i,t-1} = j, S_i = h) = \xi_{h,j,k}$. The estimated parameters are $\xi_{h,j,k}$ with $j, k \in \{1, \ldots, K\}$ and $h = 1, \ldots, H$. Our model treats the group membership indicator S_i and the number of different groups H as latent parameters. See Subsection 3.4 for the procedure used to determine H.

Group membership, or $\Pr(S_i = h)$, is modeled by the multinomial logit model as in equation (2) based on a set of regressors w_i with group-specific regression coefficients α_h. To address the initial conditions problem we model $\Pr(S_i = h|w_i, y_{i0})$ as outlined in Subsection 3.1.3. We extend the list of covariates by variables z_i that capture the relationship of unobserved heterogeneity with the initial earnings categories y_{i0}:

$$\Pr(S_i = h|w_i, z_i) = \frac{\exp(w_i\alpha_h + z_i\gamma_h)}{1 + \sum_{l=2}^{H}\exp(w_i\alpha_l + z_i\gamma_l)}.$$ \hspace{1cm} (6)

This model has the form of a mixtures-of-experts as in (2) with regressors $x_i = (z_i, w_i)$ and regression coefficients $\beta_h = (\alpha_h', \gamma_h')'$. The estimated parameters are α_h and γ_h.

Our choice of variables w includes factors that are fixed at the time of labor market entry and which we assume to be relevant for the determination of earnings mobility. We therefore
include individual characteristics such as education and the type of occupation as well as cohort effects, expressed by a set of dummies for the year of labor market entry. The central variable measuring labor market characteristics at the time of entry is the unemployment rate in the region and the year of labor market entry.

To allow for correlation of the unobserved group membership with initial earnings, the variables \(z \) are chosen to include a set of indicators for the initial wage category. Our model specification implies that the only way that covariates impact on earnings trajectories is via their effect on group membership. To allow for additional flexibility in the relationship between covariates and initial earnings we include interaction terms between the regional unemployment rate and earnings categories in the initial period in the variable \(z \). We experimented with even more flexible specifications, such as interactions of the initial earnings categories with education or leads and lags or the unemployment rate. But they did not improve the fit of the model and are thus not reported here.

3.3 Bayesian Inference for a Fixed Number of Clusters

In this paper we pursue a Bayesian approach toward estimation for fixed \(H \). \(S \) is estimated along with the group-specific transition matrices \(\xi_1, \ldots, \xi_H \) and regression coefficients \(\beta_2, \ldots, \beta_H \) from the data.

3.3.1 Prior Distributions

We assume prior independence between \(\xi_1, \ldots, \xi_H \) and \(\beta_2, \ldots, \beta_H \). All regression coefficients \(\beta_{hj} \) are assumed to be independent a priori, each following a standard normal distribution. The \(K \) rows \(\xi_{h,1}, \ldots, \xi_{h,K} \) of \(\xi_h \) are independent a priori each following a Dirichlet distribution, i.e. \(\xi_{h,j} \sim D(e_{0,j1}, \ldots, e_{0,jK}) \) with prior parameters \(e_{0,j} = (e_{0,j1}, \ldots, e_{0,jK}) = N_0 \cdot \xi_j^* \), where
\[N_0 = 10 \text { and } \]
\[
\xi^* = \begin{pmatrix}
0.7 & 0.2 & 0.025 & 0.025 & 0.025 & 0.025 \\
0.15 & 0.6 & 0.15 & 0.03 & 0.03 & 0.03 \\
0.03 & 0.15 & 0.6 & 0.15 & 0.03 & 0.03 \\
0.03 & 0.03 & 0.15 & 0.6 & 0.15 & 0.03 \\
0.025 & 0.025 & 0.025 & 0.025 & 0.2 & 0.7 \\
\end{pmatrix}.
\]

This choice takes into account that staying in a certain wage category is much more likely than moving to another wage category and transitions into adjacent categories are more likely than into the other categories.

3.3.2 MCMC Estimation

For practical Bayesian estimation we apply Markov chain Monte Carlo (MCMC) methods and extend the sampler discussed by Pamminger and Frühwirth-Schnatter (2010) to the mixtures-of-experts formulation introduced in (2). For details on MCMC inference in general, we refer to standard monographs like Geweke (2005) and Gamerman and Lopes (2006).

First, a step is added to sample the regression coefficients appearing in (2) conditional on knowing \(S \). Second, model (2) determines prior group membership in the classification step:

(a) Sample the cluster-specific transition matrices \(\xi_1, \ldots, \xi_H \) given \(S \). The various rows \(\xi_{h,j} \) of the transition matrices \(\xi_1, \ldots, \xi_H \) are conditionally independent and may be sampled line-by-line from a total of \(KH \) Dirichlet distributions:

\[
\xi_{h,j} | S, y \sim D \left(e_{0,j1} + N_{j1}^h(S), \ldots, e_{0,jK} + N_{jK}^h(S) \right) \quad j = 1, \ldots, K, \; h = 1, \ldots, H, \tag{7}
\]

where \(N_{jk}^h(S) = \sum_{i: S_i = h} N_{i,jk} \) is the total number of transitions from \(j \) to \(k \) observed in group \(h \) and is determined from the transitions \(N_{i,jk} \) for all individuals falling into that particular group.

(b) Sample the regression coefficients \(\beta_2, \ldots, \beta_H \) conditional on \(S \) from the posterior distribution \(p(\beta_2, \ldots, \beta_H | S) \), where the likelihood \(p(S | \beta_2, \ldots, \beta_H) \) is obtained from the multinomial logit model (2).
Bayes’ classification for each individual i: draw $S_i, i = 1, \ldots, N$ from the following discrete probability distribution which combines the likelihood $p(y_i|\xi_h)$ and the prior (2)

$$\Pr(S_i = h|y_i, x_i, \beta_2, \ldots, \beta_H, \xi_1, \ldots, \xi_H) \propto p(y_i|\xi_h) \frac{\exp(x_i\beta_h)}{1 + \sum_{l=2}^{H} \exp(x_i\beta_l)}, \quad h = 1, \ldots, H. \quad (8)$$

To sample the regression coefficients in step (b), we apply auxiliary mixture sampling in the differenced random utility model (dRUM) representation as introduced by Frühwirth-Schnatter and Frühwirth (2010), see Appendix A for details. This method turned out to be superior to other MCMC methods for MNL models such as Frühwirth-Schnatter and Frühwirth (2007), Scott (2011) and Holmes and Held (2006) in terms of the effective sampling rate.

We start MCMC estimation by choosing initial values for the group-indicators S in one of the following ways: non-random initial clustering such as $S = (1, \ldots, H, 1, \ldots, H, \ldots)$, random initial clustering by sampling S_i from $(1, \ldots, H)$ with replacement, k-means clustering – as implemented in R (R Development Core Team, 2010) in the base package stats – of the transition frequencies observed for each individual or, in an iterative way, using results from previous MCMC runs. We use these different strategies to verify that all chains converge to the same posterior distribution. The results in our application show that there are no remarkable differences between the different starting strategies. Actually, the results presented in this paper are based on the iterative way using previous results as starting values.

3.3.3 Dealing with Label Switching

As for any finite mixture model, label switching may occur during MCMC sampling, see Jasra et al. (2005) or Frühwirth-Schnatter (2006, Section 3.5) for a recent review. To identify a mixtures-of-experts model, we extend the approach of Frühwirth-Schnatter (2006, p. 96f) which identifies a standard finite mixture model by applying k-means clustering to all MH posterior draws of a sub-vector θ_h of the group-specific parameter ϑ_h, see also Frühwirth-Schnatter (2011). Provided that the mixture model is not overfitting, H clusters are present in these MH posterior draws and MCMC draws belonging to the same group will be assigned to the same cluster by k-means clustering. Hence the classification sequences resulting from k-means clustering show how to rearrange the group-specific parameters, even if label switching occurred during sampling.
The following scheme demonstrates how labeling using k-means clustering works for mixtures-of-experts Markov chain models. It is based on the subvector $\theta_h = (\xi_{h,11}, \ldots, \xi_{h, KK})'$ containing the group-specific persistence probabilities as in Pamminger and Frühwirth-Schnatter (2010). Step (c2-b) shows that in a mixtures-of-experts model relabeling the regression coefficients in the MNL model substitutes relabeling the weight distribution in a standard finite mixture model:

(a) Apply k-means clustering with H clusters to all MH posterior draws of $\theta^{(m)}_h$, $h = 1, \ldots, H$, $m = 1, \ldots, M$. This delivers a classification index $I^{(m)}_h$ taking values in $\{1, \ldots, H\}$ for each of the MH posterior draws.

(b) For each $m = 1, \ldots, M$, construct the classification sequence $\rho_m = (I^{(m)}_1, \ldots, I^{(m)}_H)$ and check, if ρ_m is a permutation of $\{1, \ldots, H\}$. In this case, a unique labeling is achieved by reordering the draws in the following way:

(c1) Relabel the hidden allocations through ρ_m: substitute $S^{(m)} = (S^{(m)}_1, \ldots, S^{(m)}_N)$ by $(\rho_m(S^{(m)}_1), \ldots, \rho_m(s^{(m)}_N))$.

(c2) Relabel the group-specific parameters through the inverse $\rho_m^{-1}(1), \ldots, \rho_m^{-1}(H)$ of ρ_m:

(c2-a) to relabel the group-specific transition matrices, substitute $\xi^{(m)}_1, \ldots, \xi^{(m)}_H$ by $\xi^{(m)}_{\rho_m^{-1}(1)}, \ldots, \xi^{(m)}_{\rho_m^{-1}(H)}$;

(c2-b) to relabel the regression coefficients in the MNL model, substitute $\beta^{(m)}_1, \ldots, \beta^{(m)}_H$, including $\beta^{(m)}_1 = 0$, by $\beta^{(m)}_{\rho_m^{-1}(1)} - \beta^*, \beta^{(m)}_{\rho_m^{-1}(2)} - \beta^*, \ldots, \beta^{(m)}_{\rho_m^{-1}(H)} - \beta^*$. Subtracting $\beta^* = \beta^{(m)}_{\rho_m^{-1}(1)}$ from all draws ensures that the regression coefficient of the baseline is equal to 0 in the identified model.

All classification sequences ρ_m derived by k-means clustering are expected to be permutations, if the mixture is not overfitting the number H of groups. If a small fraction of non-permutations is present, then only the subsequence of identified draws is used for posterior inference known to be sensitive to label switching like parameter estimation and classification. A high fraction of non-permutations typically happens, when the mixture is overfitting the number of components (Frühwirth-Schnatter, 2011).
3.4 Selecting the Number of Clusters

Despite much research effort, it is still an open issue how to select the number H of clusters in an optimal manner. The difficulties with identifying H are particularly well-documented for the BIC criterion (Schwarz, 1978) defined by $BIC(H) = -2 \log p(y|\hat{\theta}_H) + d_H \log n$, where $\hat{\theta}_H$ is the ML estimator of $\theta_H = (\xi_1, \ldots, \xi_H, \beta_2, \ldots, \beta_H)$, $p(y|\theta_H)$ denotes the likelihood function, $\hat{\theta}_H$ is the ML estimator, and d_H is the number of parameters in a model with H clusters. Since the mixtures-of-experts model is applied to panel data it is not obvious how to choose the sample size n (Kass and Raftery, 1995). As each time series is modeled independently, the number N of time series is a natural choice for the sample size, i.e. $n = N$. On the other hand, since multiple observations are available for each time series, one might prefer the total number of observations as sample size, i.e. $n = \sum_{i=1}^N T_i$.

The AIC criterion (Akaike, 1974) defined by $AIC(H) = -2 \log p(y|\hat{\theta}_H) + 2 d_H$ is independent of the sample size, but is well-known to be inconsistent and leads to overfitting the number of clusters H. $BIC(H)$ is known to be consistent for the number of components, if the component density is correctly specified (Keribin, 2000), although in small data sets it tends to choose models with too few components (Biernacki et al., 2000). On the other hand, simulation studies reported in Biernacki and Govaert (1997), Biernacki et al. (2000), and McLachlan and Peel (2000, Section 6.11) show that $BIC(H)$ will overrate the number of clusters under misspecification of the component density.

Since $BIC(H)$ is an asymptotic approximation to minus twice the marginal likelihood $-2 \log p(y|H)$, see e.g. Kass and Raftery (1995), it is not surprising that selecting H as to maximize the marginal likelihood $p(y|H)$ or the posterior probability distribution $p(H|y) \propto p(y|H)p(H)$ may not be adequate either, as demonstrated in various applications of model-based clustering, see e.g. Frühwirth-Schnatter and Pyne (2010).

A criterion that was found to be able to identify the correct number of clusters even when the component densities are misspecified is the approximate weight of evidence $AWE(H)$ (Banfield and Raftery, 1993). Biernacki and Govaert (1997) expressed $AWE(H)$ as a criterion which penalizes the complete data log likelihood function $p(y, S|\theta_H)$ with model complexity, i.e $AWE(H) = -2 \log p(y, S|\hat{\theta}_H^C) + 2 d_H (\frac{3}{2} + \log n)$, where $(\hat{\theta}_H^C, \hat{S})$ maximizes $\log p(y, S|\theta_H)$.

15
Various criteria involve the entropy $EN(H, \theta_H) = -\sum_{h=1}^{H} \sum_{i=1}^{N} t_{ih}(\theta_H) \log t_{ih}(\theta_H)$, where $t_{ih}(\theta_H) = \Pr(S_i = h|y_i, \theta_H)$ is the posterior classification probability defined in (8). The entropy is close to 0 if the resulting clusters are well-separated and increases with increasing overlap of the clusters. The CLC (classification likelihood criterion) (Biernacki and Govaert, 1997), for instance, penalizes the log likelihood function by the entropy rather than by model complexity, i.e. $CLC(H) = -2 \log p(y|\hat{\theta}_H) + 2 EN(H, \hat{\theta}_H)$. However, the CLC criterion works well only for well-separated clusters with a fixed weight distribution, hence its properties are not known for the more general mixtures-of-experts model.

The ICL-BIC criterion (McLachlan and Peel, 2000) penalizes the log likelihood function both by model complexity and the entropy, i.e. $ICL-BIC(H) = BIC(H) + 2 EN(H, \hat{\theta}_H)$. Simulation studies in McLachlan and Peel (2000, Section 6.11) indicate that ICL-BIC may identify the correct number of clusters for (multivariate) continuous data even under a misspecified multivariate normal clustering kernel. However, simulation studies in Biernacki et al. (2010) show that this criterion tends to fail for discrete-valued data, even if the true model is used as clustering kernel.

For discrete-valued data, Biernacki et al. (2010) recommend to use the (exact) integrated classification likelihood (ICL) which is defined as $ICL(H) = \int p(y, \hat{S}|\theta_H)p(\theta_H|y)d\theta_H$, where $p(y, S|\theta_H)$ is the complete-data likelihood function and \hat{S} corresponds to the allocations which are determined based on the maximum posterior classification probabilities (see last paragraph in Subsection 4.1). This criterion showed good performance for latent class models. For Markov chain clustering with the mixtures-of-expert extension $ICL(H)$ reads:

$$ICL(H) = p(\hat{S}) \prod_{j=1}^{K} \left(\frac{1}{\prod_{k=1}^{K} \Gamma(\epsilon_{0,jk})} \right) ^{H} \prod_{h=1}^{H} \prod_{k=1}^{K} \Gamma(\Lambda_{jk}^{h}(\hat{S}) + \epsilon_{0,jk}) \Gamma(\sum_{k=1}^{K}(\Lambda_{jk}^{h}(\hat{S}) + \epsilon_{0,jk}))^{-1},$$

where the integral $p(\hat{S}) = \int p(\hat{S}|\beta_2, \ldots, \beta_H)p(\beta_2, \ldots, \beta_H)d\beta_2, \ldots, \beta_H$ is approximated by importance sampling, using for each $h = 2, \ldots, H$ a multivariate normal distribution as proposal density for β_h with mean and covariance matrix being equal to the corresponding MCMC sample estimates.

An alternative popular criterion for Bayesian model selection is the deviance information criterion DIC (Spiegelhalter et al., 2002) which is easily computed from the MCMC draws.
However, the application of DIC to finite mixture models is not without problems (Celeux et al., 2006). This is corroborated by a recent application of model-based clustering using multivariate skew-normal and skew-t mixtures (Frühwirth-Schnatter and Pyne, 2010) which revealed a high sensitivity of DIC to changing the prior distribution, compared to other criteria like AWE. For this reason, DIC is not applied in the present paper.

4 Results

To identify groups of individuals with similar wage career, we applied Markov chain clustering for 2 up to 5 groups. For each number H of groups we simulated 10000 MCMC draws after a burn-in of 5000 draws with a thinning parameter equal to 5 and used the remaining 2000 draws for posterior inference.\(^2\)

4.1 Model Selection and Clustering

The model selection criteria described in Section 3.4 are applied to select the number H of clusters, see Figure 1.

\(AIC\) and \(BIC\) decrease with increasing H and suggest at least 5 components. However, as outlined in Section 3.4, we cannot expect that the Markov chain model is a perfect description of the cluster-specific distribution for time series in a real data panel. Thus it is likely that \(BIC\) is overfitting and that two or even more components in the mixture model correspond to a single cluster with rather similar transition behavior.

This hypothesis is supported by the other criteria; all of which suggest a smaller number of clusters. The evaluation of these criteria is based on approximate ML estimators $\hat{\theta}_H$ and $(\hat{\theta}_H^C, \hat{S})$ derived from all available MCMC draws. To check the stability of model choice we repeated several independent MCMC runs (see Figure 1). \(CLC\) and \(ICL-BIC\) indicate three clusters for different MCMC runs. Particularly the (exact) ICL suggests two clusters. However, the AWE refers to a four-group solution which has also more importance from an economic point of view. We can easily interpret four different wage-mobility groups, which are characterized by the trend over time and the variability of earnings: an “upward”, a “downward” group as well

\(^2\)The computing time for all 15000 draws is approx. 18 hours for $H = 2$, 28.5 hours for $H = 3$, 37 hours for $H = 4$ and 43.5 hours for $H = 5$ on an Intel® Core™ 2 CPU E8400 @ 3.00 GHz 2.98 GHz.
as a “static” and a “mobile” group.

In the following, we concentrate on the four-cluster solution in more detail because this solution led to more sensible interpretations from an economic point of view. The model is identified as described in Subsection 3.3.3 by applying k-means clustering to the MCMC draws. All classification sequences resulting from k-means clustering turned out to be permutations of \{1, \ldots, 4\} and allowed straightforward identification of the four-component model.

Individuals are assigned to the four wage mobility groups using the posterior classification probabilities \(t_{ih}(\theta_H) = \Pr(S_i = h | y_i, \theta_H)\) for \(H = 4\). The posterior expectation \(\hat{t}_{ih} = \mathbb{E}(t_{ih}(\theta_4)|y)\) of these probabilities is estimated by evaluating and averaging \(t_{ih}(\theta_4)\) over the 2000 thinned MCMC draws of \(\theta_4\). Each employee is then allocated to that cluster which exhibits the maximum posterior probability, i.e. \(\hat{S}_i\) is defined in such a way that \(\hat{t}_{i,\hat{S}_i} = \max_h \hat{t}_{i,h}\). The closer \(\hat{t}_{i,\hat{S}_i}\) is to 1, the higher is the segmentation power for individual \(i\).

4.2 Estimation Results

4.2.1 Analyzing Wage Mobility

To analyze wage mobility in the different clusters we investigate for each \(h = 1, \ldots, 4\) the posterior expectation of the group-specific transition matrix \(\xi_h\). The four group-specific transition matrices are visualized in Figure 2 using “balloon plots”\(^3\). The circles are proportional to the size of the corresponding entry in the transition matrix. These results are based on the prior introduced in Subsubsection 3.3.1. In order to analyze sensitivity of the results with respect to the choice of the prior we also used a prior with \(\xi^* = \frac{1}{6} \mathbf{i}'\mathbf{i}\), where \(\mathbf{i} = (1, 1, 1, 1, 1, 1)\). A comparison of these priors revealed that posterior inference is extremely robust to changing the prior in this way even for cells where hardly any transitions are observed.

Based on these transition matrices, we assign a labeling to each cluster, namely “upward”, “static”, “downward” and “mobile”. As our estimation method does not impose any a priori identification restrictions, the identification of groups and the patterns in the balloon pots are merely data driven.

\(^3\)They are generated with the function `balloonplot()` from the R package `gplots` (Jain and Warnes, 2006). Full numerical results together with standard deviations and inefficiency factors are given in Tables 1 and 2 in the Appendix. The inefficiency factors are calculated with the function `numEff()` from the R package `bayesm` (Rossi, Allenby and McCulloch, 2005).
A remarkable difference in the transition behavior of individuals belonging to different clusters is evident from Figure 2. Consider, for instance, the first column of each matrix containing the risk for an individual in income category j to drop into the no-income category in the next year. This risk is much higher for the “downward” cluster than for the other clusters.

The probability to remain in the no-income category is located in the top left cell and is again higher in the “downward” cluster than in the other ones. The remaining probabilities in the first row correspond to the chance to move out of the no-income category. These chances are smaller for the “downward” cluster than for the other clusters. In the “upward” cluster chances are high to move from the no-income category into any wage category while in the “static” cluster only the chance to move to wage category one is comparatively high.

For all matrices, the main diagonal refers to the probabilities to remain in the various wage categories. Persistence is highest in the “static” cluster. Members of the “mobile” cluster move quickly between the wage categories; especially the lowest and highest wage categories are non-absorbing states from where individuals tend to move towards the center of the wage distribution. The upper secondary diagonal represents the chance to move forward into the next higher wage category, which is higher in the “upward” and “mobile” cluster than in the other clusters. On the other hand, the lower secondary diagonal – representing the risk to move into the next lower wage category – is stronger in the “downward” cluster.

Based on the posterior classification probabilities we can also calculate the size of the clusters: 29% of the persons belong to the “static” cluster, 27% to the “upward” group, and 25% to the “mobile” cluster; only 20% of male workers starting a career fall in the “downward” trap.

In Figure 3 we visualize for each cluster a contingency table reporting in cell (j, k) the probability $\Pr(y_{i,t-1} = j, y_{it} = k|S_i = h)$ of observing the wage categories (j, k) in consecutive years for an individual in this cluster. The entries to this table sum to one. We find that most individuals in the “upward” cluster lie in the bottom right corner of this table, the reverse is true for the “downward” cluster. For the “static” group most individuals are located in the center and the lower quintiles, whereas in the “mobile” group the pattern is more diverse, but concentrated in the upper quintiles.

These differences in the transition matrices between the clusters have a strong impact on the long-run wage career of the group members, as shown by Figure 4. This figure starts for each
cluster \(h \) with an initial wage distribution \(\pi_{h,0} \) at \(t = 0 \) which is estimated from the initial wage category \(y_{i0} \) observed for all individuals \(i \) being classified to group \(h \). The posterior expectations \(E(\pi_{h,t}|y, \pi_{h,0}) \) of the cluster-specific wage distribution \(\pi_{h,t} \) after \(t \) years (\(\pi_{h,t} = \pi_{h,0}\xi_t^h \)) are shown for several periods as well as the steady state.\(^4\)

For \(t = 50 \), the wage distribution is already practically equal to the steady state \(\pi_{h,\infty} \) of the transition matrix \(\xi_h \), i.e. \(\pi_{h,\infty} = \pi_{h,\infty}\xi_h \). In the “downward” cluster the steady state is reached after only a few years, whereas in the other three clusters it takes one to two decades.

The wage distributions shown in Figure 4 are consistent with our labeling of the clusters introduced earlier. Young men belonging to the “downward” cluster have a much higher risk to start in the no-income category then any other young men. Furthermore, about 40\% of the members of this group have no income in the long-run. For young men belonging either to the “mobile” or the “upward” cluster there is little difference between the initial wage distribution when they enter the labor market. However, in the long run the pattern diverges considerably: while the members of the “upward” cluster gather themselves in the upmost quintiles, those from the “mobile” cluster are to be seen in the middle of the wage distribution. Members from the “static” cluster end up in a very balanced steady state.

4.2.2 Posterior Classification

Table 3 analyzes the segmentation power for the clustering method by reporting the quartiles and the median of the classification probabilities \(\hat{t}_{i,S_i} \) defined in Subsection 4.1 within the various groups. Note that one minus these numbers corresponds to the misclassification risk in each group (Binder, 1978), hence the closer to one, the smaller the misclassification risk. Segmentation power varies between the clusters and is the highest for the “upward” cluster and the lowest for the “mobile” cluster. Furthermore, Table 3 reports the average segmentation power over all individuals which is comparably high. 3 out of 4 individuals are assigned with at least 63.8\% to their respective groups. For 1 out of 4 individuals the assignment probability amounts to at least 97.5\%, leading to a misclassification risk of at most 2.5\%.

\(^4\)The posterior expectation is estimated by averaging the MCMC draws of \(\pi_{h,t} \) obtained by computing \(\pi_{h,t} = \pi_{h,0}\xi_t^h \) for \(t = 1, \ldots, 50 \) for all 2000 draws of the thinned MCMC sample of \(\xi_h \).
4.2.3 The Impact of Observables on Group Membership

The previous clustering analysis was more descriptive, specifying common mobility patterns of certain groups in the labor market. From an economic point of view, it is interesting to understand what characteristics of a particular person makes him more prone to fall into one or the other cluster. Moreover, our main question is: do random differences in the labor market situation at the time of entry in the labor force have a long-run impact on mobility behavior of workers? We model the prior probability of an individual to belong to a certain cluster by the multinomial logit model specified in equation (6). The estimation results are presented using the “upward” cluster as baseline.

As discussed above, we capture the general labor market situation at the time of entry into the labor market by the unemployment rate in the district together with a set of yearly time dummies to control for unspecified time trends. Further we allow for impacts of educational categories and the type of occupation on mobility patterns. To model the correlation between group membership and initial earnings categories in period zero, we add dummies for the wage category at entry with non-employment or zero income serving as baseline. Correlation between labor market entry conditions and entry wages are captured by interaction terms between these dummies and the unemployment rate.

Bayesian inference for the regression parameters in this multinomial logit model is summarized in Table 4, which reports the posterior expectations and the posterior standard deviations of all regression parameters. The results show that, indeed, bad economic conditions at the time of entry reduce the probability of an individual to end up in the favorable “upward” cluster. Individuals are almost equally shifted towards one of the three other clusters. This result is remarkable because other studies were primarily concerned with short-run impacts of a bad start, whereas different mobility patterns are a typical long-run phenomenon.

The other results are mostly according to expectations: individuals starting in white-collar jobs are most likely to end up in “upward” clusters and least likely in “downward” clusters. The picture is less clear for our skill categories: while skilled workers are most likely to be classified in the “upward” cluster, the unskilled are most likely to be in the “static” cluster and least likely to be in the “upward” and in particular the “mobile” cluster.
We include dummy variables to indicate in which wage quintile the worker started his first job to control for initial conditions. The initial earnings category is an important determinant of group membership, which implies that there is substantial correlation between unobserved heterogeneity and initial conditions. The coefficients are fairly consistent in the sense that starting in a high wage quintile makes it much less likely to end up in the “downward” or the “static” cluster; there is no consistent pattern relating the starting wage with either being in the “mobile” or the “upward” cluster, though. No clear pattern emerges from the interaction terms between unemployment rate and initial earnings categories. Those terms are included mainly to allow for arbitrary correlations between the initial conditions and the covariates influencing group membership, therefore we do not give them any interpretation. We note, however, that the inclusion of the interaction terms has a significant impact.

5 Conclusions

In this paper we have analyzed earnings trajectories of male labor market entrants in Austria whose careers are followed up to 30 years in administrative records. Our aims were to identify distinct career patterns in the population of entrants and to measure the effect of labor market conditions at the time of entry on the type of career pattern an individual gets to follow.

The empirical approach is based on model-based clustering of categorical time series based on time-homogeneous first-order Markov chains with unknown transition matrices. The Markov chain clustering approach assumes that individual transition probabilities in the earnings distribution are fixed to a group-specific transition matrix. Unobserved group membership is modeled as a multinomial logit model which allows for dependence on individual-specific and regional characteristics, which represent the effects of labor market conditions on career patterns. The model is estimated in a Bayesian approach based on Markov chain Monte Carlo samplers.

Model choice based on the AWE (approximate weight of evidence) criterion indicates that for the cohorts considered in our data set the labor market should be segmented into four groups. We investigated the segmentation power of the four-group solution and found that it is rather high. 3 out of 4 individuals are assigned with at least 63.8% probability to their respective cluster. The group-specific transition behavior turned out to be very different across the clusters and led
to an interesting interpretation from an economic point of view showing four types of earnings careers, namely “upward”, “static”, “downward” and “mobile”.

Our analysis of the determinants of group membership shows that there is a strong effect of the labor market condition at career start on mobility patterns throughout the lifetime. Especially, high unemployment rates in early years prevent young individuals from entering careers that would transport them to stable jobs at the upper end of the earnings distribution. This result about the impact of labor market conditions on mobility patterns offers an interesting explanation for the high persistence of initial earnings differences documented in the literature. If career types are determined early in life, the unfavorable impact of adverse labor market conditions on the choice of mobility patterns could lead to long term differences in the observed earnings trajectories.

The econometric methods we developed in this paper are of interest in other areas of economics, in finance, public health or marketing where it is often desirable to find groups of similar time series in a panel of a priori unlabeled discrete-valued time series. For other panels of discrete-valued time series, however, other clustering kernels might be sensible. More complex clustering kernels could involve the use of kth order Markov chains in order to extend the memory of the clustering kernel to the past k observations, see e.g. Saul and Jordan (1999). Furthermore, one could allow the transition process to depend on observable and unobservable covariates. The mixtures-of-experts formulation applied in this paper could be combined with any of these clustering kernels in an obvious way and the MCMC sampler discussed in this paper applies immediately. Our way of handling the initial condition problem is relevant whenever a dynamic clustering kernel is used such as dynamic multinomial logit or probit models.

Finally, the investigations in Subsection 3.4 and 4.1 indicate that further research is needed with respect to choosing the number of clusters. One promising approach are predictive likelihoods (Eklund and Karlsson, 2007), however, we leave this important issue for future research.

Acknowledgements

This research is supported by the Austrian Science Foundation (FWF) under the grant S 10309-G14 (NRN “The Austrian Center for Labor Economics and the Analysis of the Welfare State”, Subproject “Bayesian Econometrics”) as well as the Austrian Marshallplan Jubiläumsstiftung.
A Details on MCMC Estimation for mixtures-of-Experts Models

A well-known way to write the MNL model (2) as a random utility model (RUM) has been introduced by McFadden (1974):

\[y_{hi}^u = x_i \beta_h + \delta_{hi}, \]
\[S_i = h \iff y_{hi}^u = \max_{l \in 1, \ldots, H} y_{li}^u, \]
where, for \(i = 1, \ldots, N \) and \(h = 1, \ldots, H \), \(\delta_{hi} \) are i.i.d. errors following a type I extreme value distribution and \(y_{hi}^u \) are latent variables which may be interpreted as the "utility" of choosing category \(h \).

An alternative way to write the MNL as an augmented model involving random utilities is as a differenced RUM (dRUM), which is obtained by choosing in (10) category one as baseline and considering the model involving for \(h = 2, \ldots, H \) the differences of the utilities: \(z_{hi} = x_i \beta_h + \varepsilon_{hi} \), where \(z_{hi} = y_{hi}^u - y_{1i}^u \). Marginally, the errors \(\varepsilon_{hi} = \delta_{hi} - \delta_{1i} \) follow a logistic distribution but are no longer independent across categories. Recently, Frühwirth-Schnatter and Frühwirth (2010) showed that for each \(h = 2, \ldots, H \) the MNL has the following representation as a binary logit model conditional on knowing \(\lambda_{li} = \exp(x_i \beta_l) \) for all \(l \neq h \):

\[z_{hi} = x_i \beta_h - \log(\sum_{l \neq h} \lambda_{li}) + \varepsilon_{hi}, \]
\[D^h_i = I\{z_{hi} \geq 0\}, \]
where \(\varepsilon_{hi} \) are i.i.d. errors following a logistic distribution and \(D^h_i = I\{S_i = h\} \) is a binary outcome variable indicating whether \(S_i \) is equal to \(h \).

Representation (12) is useful, because it allows to draw \(\beta_h | \beta_{-h}, S \) for all \(h = 2, \ldots, H \) from a binary logit model conditional on knowing the remaining regression coefficients \(\beta_{-h} \).

To sample the regression coefficient \(\beta_h | \beta_{-h}, S \) from the binary logit model (12) we apply auxiliary mixture sampling as introduced by Frühwirth-Schnatter and Frühwirth (2010) for the dRUM representation of a logit model. Extensive comparisons in Frühwirth-Schnatter
and Frühwirth (2010) for the case where the outcome variable is observed rather than latent demonstrate that this method is superior to other MCMC methods for logit models such as Frühwirth-Schnatter and Frühwirth (2007), Scott (2011) and Holmes and Held (2006) in terms of the effective sampling rate. Investigation for the mixtures-of-experts model considered in this paper led to the same conclusion.

To apply auxiliary mixture sampling, the logistic distribution in (12) is approximated for each ε_{hi} by a finite scale mixture of normal distributions with zero means and parameters (s^2_r, w_r) and the component indicator r_{hi} is introduced as latent variable. Conditional on the latent utilities $z = \{z_{2i}, \ldots, z_{Hi}, i = 1, \ldots, N\}$ and the indicators $R = \{r_{2i}, \ldots, r_{Hi}, i = 1, \ldots, N\}$ the binary logit model (12) reduces to a Gaussian regression model:

$$z_{hi} = x_i \beta_h - \log(\sum_{l \neq h} \lambda_{li}) + \varepsilon_{hi}, \quad \varepsilon_{hi} | r_{hi} \sim \mathcal{N}(0, s^2_{r_{hi}}). \quad (13)$$

Based on this representation, step (b) of the MCMC scheme introduced in Subsection 3.3.2 is implemented in the following way:

(b-1) Sample the regression coefficients β_2, \ldots, β_H conditional on z and R based on the normal regression model (13). Using a normal prior (with known hyperparameters) the conditional posterior of β_h is given by a multivariate normal density.

(b-2) Sample the latent variables z_{hi} and r_{hi} conditional on β_2, \ldots, β_H and S for $i = 1, \ldots, N$ and $h = 2, \ldots, H$ with $\lambda_{hi} = \exp(x_i \beta_h)$:

(b-2-1) Sample all utilities z_{2i}, \ldots, z_{Hi} simultaneously for each i from:

$$z_{hi} = \log(\lambda_{hi}^* U_{hi} + I\{S_i = h\}) - \log(1 - U_{hi} + \lambda_{hi}^* I\{S_i \neq h\})$$

where $U_{ih} \sim \mathcal{U}[0,1]$ and $\lambda_{hi}^* = \lambda_{hi} / (\sum_{l \neq h} \lambda_{li})$.

(b-2-2) Sample the component indicators r_{hi} conditional on z_{hi} from:

$$\Pr(r_{hi} = j | z_{hi}, \beta_h) \propto \frac{w_j}{s_j} \exp \left\{ -\frac{1}{2} \left(\frac{z_{hi} - x_i \beta_h + \log(\sum_{l \neq h} \lambda_{li})}{s_j} \right)^2 \right\}$$

To start the MCMC scheme, one has to select starting values for z and R.
References

28

Tables

"upward"

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.3594(0.736)</td>
<td>0.1364(0.696)</td>
<td>0.0970(0.353)</td>
<td>0.1105(0.318)</td>
<td>0.1481(0.363)</td>
<td>0.1486(0.364)</td>
</tr>
<tr>
<td>1</td>
<td>0.1255(0.574)</td>
<td>0.5970(1.330)</td>
<td>0.1570(0.623)</td>
<td>0.0644(0.289)</td>
<td>0.0396(0.198)</td>
<td>0.0166(0.109)</td>
</tr>
<tr>
<td>2</td>
<td>0.0768(0.283)</td>
<td>0.0596(0.281)</td>
<td>0.4318(0.706)</td>
<td>0.3179(0.520)</td>
<td>0.0922(0.274)</td>
<td>0.0217(0.120)</td>
</tr>
<tr>
<td>3</td>
<td>0.0610(0.195)</td>
<td>0.0172(0.108)</td>
<td>0.0567(0.187)</td>
<td>0.4744(0.445)</td>
<td>0.3482(0.396)</td>
<td>0.0424(0.152)</td>
</tr>
<tr>
<td>4</td>
<td>0.0490(0.123)</td>
<td>0.0075(0.047)</td>
<td>0.0093(0.051)</td>
<td>0.0482(0.125)</td>
<td>0.6419(0.305)</td>
<td>0.2441(0.265)</td>
</tr>
<tr>
<td>5</td>
<td>0.0481(0.065)</td>
<td>0.0026(0.015)</td>
<td>0.0014(0.012)</td>
<td>0.0032(0.018)</td>
<td>0.0381(0.068)</td>
<td>0.9065(0.097)</td>
</tr>
</tbody>
</table>

"static"

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.3548(0.938)</td>
<td>0.4191(0.783)</td>
<td>0.1595(0.523)</td>
<td>0.0540(0.282)</td>
<td>0.0123(0.129)</td>
<td>0.0003(0.021)</td>
</tr>
<tr>
<td>1</td>
<td>0.1120(0.241)</td>
<td>0.7421(0.334)</td>
<td>0.1278(0.232)</td>
<td>0.0143(0.065)</td>
<td>0.0035(0.029)</td>
<td>0.0004(0.010)</td>
</tr>
<tr>
<td>2</td>
<td>0.0518(0.128)</td>
<td>0.0745(0.149)</td>
<td>0.7318(0.265)</td>
<td>0.1341(0.204)</td>
<td>0.0075(0.049)</td>
<td>0.0004(0.012)</td>
</tr>
<tr>
<td>3</td>
<td>0.0361(0.116)</td>
<td>0.0144(0.074)</td>
<td>0.8822(0.197)</td>
<td>0.7554(0.298)</td>
<td>0.1105(0.232)</td>
<td>0.0013(0.026)</td>
</tr>
<tr>
<td>4</td>
<td>0.0362(0.138)</td>
<td>0.0052(0.055)</td>
<td>0.0062(0.062)</td>
<td>0.0556(0.253)</td>
<td>0.8456(0.318)</td>
<td>0.0512(0.218)</td>
</tr>
<tr>
<td>5</td>
<td>0.0430(0.247)</td>
<td>0.0015(0.051)</td>
<td>0.0015(0.054)</td>
<td>0.0012(0.055)</td>
<td>0.0308(0.365)</td>
<td>0.9219(0.474)</td>
</tr>
</tbody>
</table>

"downward"

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5749(0.334)</td>
<td>0.2456(0.320)</td>
<td>0.1027(0.183)</td>
<td>0.0527(0.134)</td>
<td>0.0209(0.088)</td>
<td>0.0032(0.034)</td>
</tr>
<tr>
<td>1</td>
<td>0.3523(0.509)</td>
<td>0.4834(0.643)</td>
<td>0.1161(0.290)</td>
<td>0.0344(0.125)</td>
<td>0.0126(0.068)</td>
<td>0.0011(0.020)</td>
</tr>
<tr>
<td>2</td>
<td>0.2699(0.454)</td>
<td>0.1678(0.348)</td>
<td>0.4084(0.611)</td>
<td>0.1263(0.311)</td>
<td>0.0253(0.137)</td>
<td>0.0024(0.039)</td>
</tr>
<tr>
<td>3</td>
<td>0.2406(0.521)</td>
<td>0.0794(0.287)</td>
<td>0.1746(0.444)</td>
<td>0.3804(0.660)</td>
<td>0.1172(0.410)</td>
<td>0.0077(0.093)</td>
</tr>
<tr>
<td>4</td>
<td>0.2196(0.701)</td>
<td>0.0580(0.373)</td>
<td>0.0607(0.372)</td>
<td>0.2167(0.687)</td>
<td>0.3967(1.078)</td>
<td>0.0483(0.396)</td>
</tr>
<tr>
<td>5</td>
<td>0.2551(1.884)</td>
<td>0.0275(0.625)</td>
<td>0.0367(0.711)</td>
<td>0.0805(1.039)</td>
<td>0.2365(1.825)</td>
<td>0.3638(2.740)</td>
</tr>
</tbody>
</table>

"mobile"

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.2914(0.809)</td>
<td>0.1469(0.509)</td>
<td>0.2381(0.535)</td>
<td>0.2078(0.423)</td>
<td>0.1074(0.308)</td>
<td>0.0084(0.087)</td>
</tr>
<tr>
<td>1</td>
<td>0.2143(0.639)</td>
<td>0.3524(1.054)</td>
<td>0.2901(0.631)</td>
<td>0.1048(0.341)</td>
<td>0.0356(0.179)</td>
<td>0.0027(0.046)</td>
</tr>
<tr>
<td>2</td>
<td>0.1006(0.242)</td>
<td>0.0797(0.205)</td>
<td>0.5315(0.530)</td>
<td>0.2478(0.350)</td>
<td>0.0381(0.134)</td>
<td>0.0023(0.030)</td>
</tr>
<tr>
<td>3</td>
<td>0.0666(0.148)</td>
<td>0.0198(0.072)</td>
<td>0.1037(0.168)</td>
<td>0.6153(0.352)</td>
<td>0.1907(0.232)</td>
<td>0.0039(0.032)</td>
</tr>
<tr>
<td>4</td>
<td>0.0531(0.120)</td>
<td>0.0080(0.043)</td>
<td>0.0154(0.061)</td>
<td>0.1233(0.192)</td>
<td>0.7341(0.277)</td>
<td>0.0662(0.155)</td>
</tr>
<tr>
<td>5</td>
<td>0.0453(0.285)</td>
<td>0.0042(0.079)</td>
<td>0.0103(0.123)</td>
<td>0.0215(0.179)</td>
<td>0.3432(0.983)</td>
<td>0.5755(1.111)</td>
</tr>
</tbody>
</table>

Table 1: Posterior expectation $E(\xi_h|y)$ and, in parenthesis, posterior standard deviations $\text{SD}(\xi_h|y)$ (multiplied by 100) of the average transition matrix ξ_h in the various clusters.
<table>
<thead>
<tr>
<th>Row</th>
<th>“upward”</th>
<th>“static”</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.56</td>
<td>1.05</td>
</tr>
<tr>
<td>2</td>
<td>1.20</td>
<td>1.48</td>
</tr>
<tr>
<td>3</td>
<td>1.69</td>
<td>1.58</td>
</tr>
<tr>
<td>4</td>
<td>1.15</td>
<td>1.61</td>
</tr>
<tr>
<td>5</td>
<td>1.18</td>
<td>0.98</td>
</tr>
<tr>
<td>6</td>
<td>0.89</td>
<td>0.59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Row</th>
<th>“downward”</th>
<th>“mobile”</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.10</td>
<td>1.67</td>
</tr>
<tr>
<td>2</td>
<td>1.27</td>
<td>1.43</td>
</tr>
<tr>
<td>3</td>
<td>2.09</td>
<td>1.61</td>
</tr>
<tr>
<td>4</td>
<td>2.73</td>
<td>1.27</td>
</tr>
<tr>
<td>5</td>
<td>2.08</td>
<td>1.44</td>
</tr>
<tr>
<td>6</td>
<td>1.30</td>
<td>1.28</td>
</tr>
</tbody>
</table>

Table 2: Inefficiency factors of the MCMC draws obtained for each row \(j = 1, \ldots, 6 \) of the cluster-specific transition matrices \(\xi_{h,j} \) for each cluster.

<table>
<thead>
<tr>
<th>Markov chain clustering</th>
<th>1st Qu.</th>
<th>Median</th>
<th>3rd Qu.</th>
</tr>
</thead>
<tbody>
<tr>
<td>“upward”</td>
<td>0.7751</td>
<td>0.9552</td>
<td>0.9940</td>
</tr>
<tr>
<td>“static”</td>
<td>0.6009</td>
<td>0.7977</td>
<td>0.9558</td>
</tr>
<tr>
<td>“downward”</td>
<td>0.6272</td>
<td>0.8538</td>
<td>0.9727</td>
</tr>
<tr>
<td>“mobile”</td>
<td>0.6042</td>
<td>0.7851</td>
<td>0.9337</td>
</tr>
<tr>
<td>overall</td>
<td>0.6378</td>
<td>0.8532</td>
<td>0.9746</td>
</tr>
</tbody>
</table>

Table 3: Segmentation power of Markov chain clustering; reported are the lower quartile, the median and the upper quartile of the individual posterior classification probabilities \(\hat{t}_{i,S_i} \) for all individuals within a certain cluster as well as for all individuals.
Table 4: Multinomial logit model to explain group membership in a particular cluster (baseline: “upward” cluster); the numbers are the posterior expectation and, in parenthesis, the posterior standard deviation of the various regression coefficients.
Figures

Figure 1: Model selection criteria for various numbers H of clusters and several independent MCMC runs.

Figure 2: Visualization of posterior expectation of the transition matrices ξ_1, ξ_2, ξ_3, and ξ_4 obtained by Markov chain clustering. The circular areas are proportional to the size of the corresponding entry in the transition matrix. The corresponding group sizes are calculated based on the posterior classification probabilities and are indicated in the parenthesis.
Figure 3: Balloonplots of a contingency table reporting for each cluster in cell \((j, k)\) the probability \(\Pr(y_{i,t-1} = j, y_{it} = k | S_i = h)\) of observing the wage categories \((j, k)\) in consecutive years for an individual in this cluster. The entries to this table sum to one.

Figure 4: Posterior expectation of the wage distribution \(\pi_{h,t}\) over the wage categories 0 to 5 after a period of \(t\) years in the various clusters.